

	Release:	0.12.0

	Date:	Aug 30, 2017

Quantities

Quantities is designed to handle arithmetic and conversions of physical
quantities, which have a magnitude, dimensionality specified by various units,
and possibly an uncertainty. Quantities builds on the popular numpy library
and is designed to work with numpy’s standard ufuncs, many of which are
already supported.

Quantities is actively developed, and while the current features and API are
stable, test coverage is incomplete and the package is not ready for
production use. Python-2.6.0 or later is required.

	User’s Guide
	Installation

	Quick-start tutorial

	Known Issues

	License

	Credits

	Developer’s Guide
	Documenting Quantities

	Development

	Releases

User’s Guide

	Installation
	Prerequisites

	Source Code Installation

	Development

	Quick-start tutorial

	Known Issues
	Temperature conversion

	umath functions

	Functions which ignore/drop units

	License
	License Agreement for Quantities

	License Agreement for Scimath

	Credits

Installation

Prerequisites

Quantities has a few dependencies:

	Python [http://www.python.org/] (>=2.7)

	NumPy [http://www.scipy.org] (>=1.8.2)

Source Code Installation

To install Quantities, download the Quantites sourcecode from PyPi [http://pypi.python.org/pypi/quantities]
and run “python setup.py install” in the quantities source directory,
or run “pip install quantities”.

Development

You can follow and contribute to Quantities’ development using git:

git clone git@github.com:python-quantities/python-quantities.git

Bugs, feature requests, and questions can be directed to the github [http://github.com/python-quantities/python-quantities]
website.

Quick-start tutorial

Quantities is designed to handle arithmetic and conversions of
physical quantities, which have a magnitude, dimensionality specified
by various units, and possibly an uncertainty. Quantities is designed
to work with numpy’s standard ufuncs, many of which are already
supported. The package is actively developed, and while the current
features and API are stable, test coverage is incomplete and so the
package is not suggested for production use.

It is strongly suggested to import quantities to its own namespace, so
units and constants variables are not accidentally overwritten:

>>> import quantities as pq

Here pq stands for “physical quantities” or “python quantities”.
There are a number of ways to create a quantity. In practice, it is
convenient to think of quantities as a combination of a magnitude and
units. These two quantities are equivalent:

>>> import numpy as np
>>> q = np.array([1,2,3]) * pq.J
>>> q = [1,2,3] * pq.J
>>> print q
[1. 2. 3.] J

The Quantity constructor can also be used to create quantities,
similar to numpy.array. Units can be designated using a string
containing standard unit abbreviations or unit names. For example:

>>> q = pq.Quantity([1,2,3], 'J')
>>> q = pq.Quantity([1,2,3], 'joules')

Units are also available as variables, and can be passed to
Quantity:

>>> q = pq.Quantity([1,2,3], pq.J)

You can modify a quantity’s units in place:

>>> q = 1 * pq.m
>>> q.units = pq.ft
>>> print q
3.280839895013123 ft

or equivalently:

>>> q = 1 * pq.meter
>>> q.units = 'ft' # or 'foot' or 'feet'
>>> print q
3.280839895013123 ft

Note that, with strings, units can be designated using plural
variants. Plural variants of the module variables are not available at
this time, in the interest of keeping the units namespace somewhat
manageable. q.units = ‘feet’ will work, q.units = pq.feet will
not.

The units themselves are special objects that can not be modified in
place:

>>> pq.meter.units = 'feet'
AttributeError: can not modify protected units

Instead of modifying a quantity in place, you can create a new
quantity, rescaled to the new units:

>>> q = 300 * pq.ft * 600 * pq.ft
>>> q2 = q.rescale('US_survey_acre')
>>> print q2
4.13221487605 US_survey_acre

but rescaling will fail if the requested units fails a dimensional
analysis:

>>> q = 10 * pq.joule
>>> q2 = q.rescale(pq.watt)
ValueError: Unable to convert between units of "J" and "W"

Quantities can not be rescaled in place if the unit conversion fails
a dimensional analysis:

>>> q = 10 * pq.joule
>>> q.units = pq.watts
ValueError: Unable to convert between units of "J" and "W"
>>> print q
10.0 J

Quantities will attempt to simplify units when the users intent is
unambiguous:

>>> q = (10 * pq.meter)**3
>>> q2 = q/(5*pq.meter)**2
>>> print q2
40 m

Quantities will not try to guess in an ambiguous situation:

>>> q = (10 * pq.meter)**3
>>> q2 = q/(5*pq.ft)**2
>>> print q2
40 m**3/ft**2

In that case, it is not clear whether the user wanted ft converted to
meters, or meters to feet, or neither. Instead, you can obtain a new
copy of the quantity in its irreducible units, which by default are SI
units:

>>> q = (10 * pq.meter)**3
>>> q2 = q/(5*pq.ft)**2
>>> print q2
40 m**3/ft**2
>>> qs = q2.simplified
>>> print qs
430.556416668 m

It is also possible to customize the units in which simplified
quantities are expressed:

>>> pq.set_default_units('cgs')
>>> print pq.J.simplified
10000000.0 g*cm**2/s**2
>>> pq.set_default_units(length='m', mass='kg')

There are times when you may want to treat a group of units as a
single compound unit. For example, surface area per unit volume is a
fairly common quantity in materials science. If expressed in the
usual way, the quantity will be expressed in units that you may not
recognize:

>>> q = 1 * pq.m**2 / pq.m**3
>>> print q
1.0 1/m

Here are some tricks for working with these compound units, which
can be preserved:

>>> q = 1 * pq.CompoundUnit("m**2/m**3")
>>> print q
1.0 (m**2/m**3)

and can be simplified:

>>> qs = q.simplified
>>> qs
1.0 1/m

and then rescaled back into compound units:

>>> q2 = qs.rescale(CompoundUnit("m**2/m**3"))
>>> print q2
1.0 (m**2/m**3)

Compound units can be combined with regular units as well:

>>> q = 1 * pq.CompoundUnit('parsec/cm**3') * pq.cm**2
>>> print q
1.0 cm**2*(parsec/cm**3)

It is easy to define a unit that is not already provided by
quantities. For example:

>>> uK = pq.UnitQuantity('microkelvin', pq.degK/1e6, symbol='uK')
>>> print uK
1 uK (microkelvin)
>>> q = 1000*uK
>>> print q.simplified
0.001 K

There is also support for quantities with uncertainty:

>>> q = UncertainQuantity(4,J,.2)
>>> q
4.0*J
+/-0.2*J (1 sigma)

By assuming that the uncertainties are uncorrelated, the uncertainty can be
propagated during arithmetic operations:

>>> length = UncertainQuantity(2.0, m, .001)
>>> width = UncertainQuantity(3.0, m, .001)
>>> area = length*width
>>> area
6.0*m**2
+/-0.00360555127546*m**2 (1 sigma)

In that case, the measurements of the length and width were independent, and
the two uncertainties presumed to be uncorrelated. Here is a warning though:

>>> q*q
16.0*J**2
+/-1.1313708499*J**2 (1 sigma)

This result is probably incorrect, since it assumes the uncertainties of the two
multiplicands are uncorrelated. It would be more accurate in this case to use:

>>> q**2
16.0*J**2
+/-1.6*J**2 (1 sigma)

There is an entire subpackage dedicated to physical constants. The
values of all the constants are taken from values published by the
National Institute of Standards and Technology at
http://physics.nist.gov/constants . Most physical constants have some
form of uncertainty, which has also been published by NIST. All
uncertainties are one standard deviation. There are lots of constants
and quantities includes them all (with one exception: F*, the Faraday
constant for conventional electrical current, which is defined in
units of C_90, for which I have not found a hard reference value).
Physical constants are sort of similar to compound units, for example:

>>> print pq.constants.proton_mass
1 m_p (proton_mass)
>>> print pq.constants.proton_mass.simplified
1.672621637e-27 kg
+/-8.3e-35 kg (1 sigma)

A Latex representation of the dimensionality may be obtained in the following fashion:

>>> g = pq.Quantity(9.80665,'m/s**2')
>>> mass = 50 * pq.kg
>>> weight = mass*g
>>> print weight.dimensionality.latex
$\mathrm{\frac{kg{\cdot}m}{s^{2}}}$
>>> weight.units = pq.N
>>> print weight.dimensionality.latex
N

The Latex output is compliant with the MathText subset used by Matplotlib. To add
formatted units to the axis label of a Matplotlib figure, one could use:

>>> ax.set_ylabel('Weight ' + weight.dimensionality.latex)

Greater customization is available via the markup.format_units_latex function. It allows
the user to modify the font, the multiplication symbol, or to encapsulate the latex
string in parentheses. Due to the complexity of CompoundUnits, the latex rendering
of CompoundUnits will utilize the latex frac{num}{den} construct.

Although it is not illustrated in this guide, unicode symbols can be
used to provide a more compact representation of the units. This
feature is disabled by default. It can be enabled by setting the
following in your ~/.pythonrc.py:

quantities_unicode = True

or you can change this setting on the fly by doing:

from quantities import markup
markup.config.use_unicode = True # or False

Even when unicode is enabled, when you pass strings to designate
units, they should still conform to valid python expressions.

Attention

Quantities is not a package for describing coordinate systems that require a
point of reference, like positions on a map. In particular, Quantities does
not support absolute temperature scales. Instead, temperatures are assumed to
be temperature differences. For example:

>>> T = 20 * pq.degC
>>> print T.rescale('K')
20.0 K

Proper support of coordinate systems would be a fairly large undertaking and
is outside the scope of this project.

Known Issues

Quantities arrays are designed to work like normal numpy arrays. However, a few
operations are not yet fully functioning.

Note

In the following code examples, it’s assumed that you’ve initiated the
following imports:

>>> import numpy as np
>>> import quantities as pq

Temperature conversion

Quantities is not designed to handle coordinate systems that require a point of
reference, like positions on a map or absolute temperature scales. Proper
support of coordinate systems would be a fairly large undertaking and is
outside the scope of this project. Furthermore, consider the following:

>>> T_0 = 100 * pq.K
>>> T_1 = 200 * pq.K
>>> dT = T_1-T_0
>>> dT.units = pq.degF

To properly support the above example, quantities would have to distinguish
absolute temperatures with temperature differences. It would have to know how
to combine these two different animals, etc. The quantities project has
therefore elected to limit the scope to relative quantities.

As a consequence, quantities treats temperatures as a temperature difference.
This is a distinction without a difference when considering Kelvin and Rankine,
or transformations between the two scales, since both scales have zero offset.
Temperature scales in Celsius and Fahrenheit are different and would require a
non-zero offset, which is not supported in Quantities unit transformation
framework.

umath functions

Many common math functions ignore the dimensions of quantities. For example,
trigonometric functions (e.g. np.sin) suffer this fate. For these functions,
quantities arrays are treated like normal arrays and the calculations proceed
as normal (except that a “not implemented” warning is raised). Note, however,
this behavior is not ideal since some functions should behave differently for
different units. For example, you would expect np.sin to give different
results for an angle of 1° versus an angle of 1 radian; instead, np.sin
extracts the magnitude of the input and assumes that it is already in radians.

To properly handle quantities, use the corresponding quantities functions
whenever possible. For example, pq.sin will properly handle the angle inputs
described above. For an exhaustive list, see the functions defined in
pq.umath.

Functions which ignore/drop units

There are additional numpy functions not in pq.umath that ignore and drop
units. Below is a list known functions in this category

	vstack

	interp

License

Quantities only uses BSD compatible code. See the Open Source
Initiative licenses page [http://www.opensource.org/licenses]
for details on individual licenses.

License Agreement for Quantities

Copyright (c) 2012, Darren Dale <dsdale24@gmail.com>
All rights reserved.

Redistribution and use in source and binary forms, with or without
modification, are permitted provided that the following conditions
are met:
1. Redistributions of source code must retain the above copyright

notice, this list of conditions and the following disclaimer.

	Redistributions in binary form must reproduce the above copyright
notice, this list of conditions and the following disclaimer in the
documentation and/or other materials provided with the distribution.

	Neither the name of the University nor the names of its contributors
may be used to endorse or promote products derived from this software
without specific prior written permission.

THIS SOFTWARE IS PROVIDED BY THE REGENTS AND CONTRIBUTORS ``AS IS’’ AND
ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT LIMITED TO, THE
IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR PURPOSE
ARE DISCLAIMED. IN NO EVENT SHALL THE REGENTS OR CONTRIBUTORS BE LIABLE
FOR ANY DIRECT, INDIRECT, INCIDENTAL, SPECIAL, EXEMPLARY, OR CONSEQUENTIAL
DAMAGES (INCLUDING, BUT NOT LIMITED TO, PROCUREMENT OF SUBSTITUTE GOODS
OR SERVICES; LOSS OF USE, DATA, OR PROFITS; OR BUSINESS INTERRUPTION)
HOWEVER CAUSED AND ON ANY THEORY OF LIABILITY, WHETHER IN CONTRACT, STRICT
LIABILITY, OR TORT (INCLUDING NEGLIGENCE OR OTHERWISE) ARISING IN ANY WAY
OUT OF THE USE OF THIS SOFTWARE, EVEN IF ADVISED OF THE POSSIBILITY OF
SUCH DAMAGE.

License Agreement for Scimath

This software is OSI Certified Open Source Software.
OSI Certified is a certification mark of the Open Source Initiative.

Copyright (c) 2006, Enthought, Inc.
All rights reserved.

Redistribution and use in source and binary forms, with or without
modification, are permitted provided that the following conditions are met:

	Redistributions of source code must retain the above copyright notice, this
list of conditions and the following disclaimer.

	Redistributions in binary form must reproduce the above copyright notice,
this list of conditions and the following disclaimer in the documentation
and/or other materials provided with the distribution.

	Neither the name of Enthought, Inc. nor the names of its contributors may
be used to endorse or promote products derived from this software without
specific prior written permission.

THIS SOFTWARE IS PROVIDED BY THE COPYRIGHT HOLDERS AND CONTRIBUTORS “AS IS” AND
ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT LIMITED TO, THE IMPLIED
WARRANTIES OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR PURPOSE ARE
DISCLAIMED. IN NO EVENT SHALL THE COPYRIGHT OWNER OR CONTRIBUTORS BE LIABLE FOR
ANY DIRECT, INDIRECT, INCIDENTAL, SPECIAL, EXEMPLARY, OR CONSEQUENTIAL DAMAGES
(INCLUDING, BUT NOT LIMITED TO, PROCUREMENT OF SUBSTITUTE GOODS OR SERVICES;
LOSS OF USE, DATA, OR PROFITS; OR BUSINESS INTERRUPTION) HOWEVER CAUSED AND ON
ANY THEORY OF LIABILITY, WHETHER IN CONTRACT, STRICT LIABILITY, OR TORT
(INCLUDING NEGLIGENCE OR OTHERWISE) ARISING IN ANY WAY OUT OF THE USE OF THIS
SOFTWARE, EVEN IF ADVISED OF THE POSSIBILITY OF SUCH DAMAGE.

Credits

Quantities was written by Darren Dale, with the hope that additional
developers will contribute to — and take credit for — its
development.

Special thanks to those who have made valuable contributions
(roughly in order of first contribution by date)

	Charles Doutriaux

	wrote the python wrapper for unit conversions with the UDUnits
library (no longer used)

	Enthought Inc.

	the original units registry was developed at Enthought for the
Enthought Tool Suite.

	John Salvatier

	added support for the Quantity iterator, contributed to support for
simplified representations of units, comparison operators, and
contributed unit tests.

	Tony Yu

	contributed several bug fixes and contributed to the documentation.

Developer’s Guide

	Documenting Quantities
	Getting started

	Organization of Quantities’ documentation

	Formatting

	Figures

	Referring to quantities documents

	Internal section references

	Section names, etc

	Emacs helpers

	Development

	Releases
	Creating Source Releases

	Creating Windows Installers

	Building Quantities documentation

Documenting Quantities

Getting started

The documentation for Quantities is generated from ReStructured Text
using the Sphinx [http://sphinx.pocoo.org/] documentation generation tool and the numpydoc [http://pypi.python.org/pypi/numpydoc]
Sphinx extension. Sphinx-0.6.3 or later is required. You can obtain
Sphinx and numpydoc from the Python Package Index [http://pypi.python.org/pypi] or
by doing:

easy_install sphinx

The documentation sources are found in the doc/ directory in the trunk.
The output produced by Sphinx can be configured by editing the conf.py
file located in the doc/ directory. To build the users guide in html
format, run from the main quantities directory:

python setup.py build_sphinx

and the html will be produced in build/sphinx/html. To build the pdf file:

python setup.py build_sphinx -b latex
cd build/sphinx/latex
make all-pdf

Organization of Quantities’ documentation

The actual ReStructured Text files are kept in doc. The main
entry point is doc/index.rst, which pulls in the
index.rst file for the user guide and the developers guide.
The documentation suite is built as a single document in order to
make the most effective use of cross referencing, we want to make
navigating the Quantities documentation as easy as possible.

Additional files can be added to the various guides by including their base
file name (the .rst extension is not necessary) in the table of contents.
It is also possible to include other documents through the use of an include
statement, such as:

.. include:: ../TODO

Formatting

The Sphinx website contains plenty of documentation [http://sphinx.pocoo.org/contents.html] concerning ReST markup and
working with Sphinx in general. Since quantities is so closely coupled with the
numpy package, quantities will conform to numpy’s documentation standards and
use numpy’s documentation tools. Please familiarize yourself with the docstring
standard [http://projects.scipy.org/scipy/numpy/wiki/CodingStyleGuidelines#docstring-standard] and the examples [http://projects.scipy.org/scipy/numpy/browser/trunk/doc/example.py#L37] like these [http://projects.scipy.org/scipy/numpy/browser/trunk/doc/EXAMPLE_DOCSTRING.txt].

Here are a few additional things to keep in
mind:

	Please familiarize yourself with the Sphinx directives for inline
markup [http://sphinx.pocoo.org/markup/inline.html]. Quantities’ documentation makes heavy use of cross-referencing and
other semantic markup. For example, when referring to external files, use the
:file: directive.

	Function arguments and keywords should be referred to using the emphasis
role. This will keep Quantities’ documentation consistant with Python’s
documentation:

Here is a description of *argument*

Please do not use the default role:

Please do not describe `argument` like this.

nor the literal role:

Please do not describe ``argument`` like this.

	Sphinx does not support tables with column- or row-spanning cells for
latex output. Such tables can not be used when documenting Quantities.

	Mathematical expressions can be rendered as png images in html, and in the
usual way by latex. For example:

:math:`\sin(x_n^2)` yields: [image: \sin(x_n^2)], and:

.. math::

 \int_{-\infty}^{\infty}\frac{e^{i\phi}}{1+x^2\frac{e^{i\phi}}{1+x^2}}

yields:

[image: \int_{-\infty}^{\infty}\frac{e^{i\phi}}{1+x^2\frac{e^{i\phi}}{1+x^2}}]

	Footnotes [1] can be added using [#]_, followed later by:

.. rubric:: Footnotes

.. [#]

Footnotes

	[1]	For example.

	Use the note and warning directives, sparingly, to draw attention to
important comments:

.. note::
 Here is a note

yields:

Note

here is a note

also:

Warning

here is a warning

	Use the deprecated directive when appropriate:

.. deprecated:: 0.98
 This feature is obsolete, use something else.

yields:

Deprecated since version 0.98: This feature is obsolete, use something else.

	Use the versionadded and versionchanged directives, which have similar
syntax to the deprecated role:

.. versionadded:: 0.98
 The transforms have been completely revamped.

New in version 0.98: The transforms have been completely revamped.

	Use the seealso directive, for example:

.. seealso::

 Using ReST :ref:`emacs-helpers`:
 One example

 A bit about :ref:`referring-to-quantities-docs`:
 One more

yields:

See also

	Using ResT Emacs helpers:

	One example

	A bit about Referring to quantities documents:

	One more

	The autodoc extension will handle index entries for the API, but additional
entries in the index [http://sphinx.pocoo.org/markup/para.html#index-generating-markup] need to be explicitly added.

Docstrings

In addition to the aforementioned formatting suggestions:

	Please limit the text width of docstrings to 70 characters.

	Keyword arguments should be described using a definition list.

Figures

Dynamically generated figures

The top level doc dir has a folder called pyplots in
which you should include any pyplot plotting scripts that you want to
generate figures for the documentation. It is not necessary to
explicitly save the figure in the script, this will be done
automatically at build time to insure that the code that is included
runs and produces the advertised figure. Several figures will be
saved with the same basnename as the filename when the documentation
is generated (low and high res PNGs, a PDF). Quantities includes a
Sphinx extension (sphinxext/plot_directive.py) for generating
the images from the python script and including either a png copy for
html or a pdf for latex:

.. plot:: pyplot_simple.py
 :include-source:

The :scale: directive rescales the image to some percentage of the
original size, though we don’t recommend using this in most cases
since it is probably better to choose the correct figure size and dpi
in mpl and let it handle the scaling. :include-source: will
present the contents of the file, marked up as source code.

Static figures

Any figures that rely on optional system configurations need to be handled a
little differently. These figures are not to be generated during the
documentation build, in order to keep the prerequisites to the documentation
effort as low as possible. Please run the doc/pyplots/make.py script
when adding such figures, and commit the script and the images to
svn. Please also add a line to the README in doc/pyplots for any additional
requirements necessary to generate a new figure. Once these steps have been
taken, these figures can be included in the usual way:

.. plot:: tex_unicode_demo.py
 :include-source

Referring to quantities documents

In the documentation, you may want to include to a document in the Quantities
src, e.g. a license file or an example. When you include these files,
include them using the literalinclude directive:

.. literalinclude:: ../examples/some_example.py

Internal section references

To maximize internal consistency in section labeling and references,
use hypen separated, descriptive labels for section references, eg:

.. _howto-webapp:

and refer to it using the standard reference syntax:

See :ref:`howto-webapp`

Keep in mind that we may want to reorganize the contents later, so
let’s avoid top level names in references like user or devel
or faq unless necesssary, because for example the FAQ “what is a
backend?” could later become part of the users guide, so the label:

.. _what-is-a-backend

is better than:

.. _faq-backend

In addition, since underscores are widely used by Sphinx itself, let’s prefer
hyphens to separate words.

Section names, etc

For everything but top level chapters, please use Upper lower for
section titles, eg Possible hangups rather than Possible
Hangups

Emacs helpers

There is an emacs mode rst.el [http://docutils.sourceforge.net/tools/editors/emacs/rst.el] which
automates many important ReST tasks like building and updateing
table-of-contents, and promoting or demoting section headings. Here
is the basic .emacs configuration:

(require 'rst)
(setq auto-mode-alist
 (append '(("\\.txt$" . rst-mode)
 ("\\.rst$" . rst-mode)
 ("\\.rest$" . rst-mode)) auto-mode-alist))

Some helpful functions:

C-c TAB - rst-toc-insert

 Insert table of contents at point

C-c C-u - rst-toc-update

 Update the table of contents at point

C-c C-l rst-shift-region-left

 Shift region to the left

C-c C-r rst-shift-region-right

 Shift region to the right

Development

Quantities development uses the principles of test-driven development. New
features or bug fixes need to be accompanied by unit tests based on Python’s
unittest package. Unit tests can be run with the following:

python setup.py test

This works with the version of unittest provided by the python-2.7 and
python-3.2+ standard library.

Releases

Creating Source Releases

Quantities is distributed as a source release for Linux and OS-X. To create a
source release, just do:

python setup.py register
python setup.py sdist --formats=zip,gztar upload --sign

This will create the tgz source file and upload it to the Python Package Index.
Uploading to PyPi requires a .pypirc file in your home directory, something
like:

[server-login]
username: <username>
password: <password>

You can create a source distribution without uploading by doing:

python setup.py sdist

This creates a source distribution in the dist/ directory.

Creating Windows Installers

We distribute binary installers for the windows platform. In order to build the
windows installer, open a DOS window, cd into the quantities source directory
and run:

python setup.py build
python setup.py bdist_msi

This creates the executable windows installer in the dist/ directory.

Building Quantities documentation

When publishing a new release, the Quantities doumentation needs to be generated
and published as well. Sphinx [http://sphinx.pocoo.org/], LaTeX [http://www.latex-project.org/] (preferably TeX-Live [http://www.tug.org/texlive/]), and dvipng [http://savannah.nongnu.org/projects/dvipng/] are
required to build the documentation. Once these are installed, do:

cd doc
make html

which will produce the html output and save it in build/sphinx/html. Then run:

make latex
cd build/latex
make all-pdf
cp Quantities.pdf ../html

which will generate a pdf file in the latex directory. Finally, upload the html
content to the http://packages.python.org/quantities/ webserver. To do so:

cd build/html
zip -r quantities *

and then visit the Quantities project page [http://pypi.python.org/pypi?%3Aaction=pkg_edit&name=quantities] at the Python Package Index to
upload the zip archive.

 Python Module Index

 q

 		 	

 		
 q	

 	
 	
 quantities	

Index

 Q

Q

 	
 	quantities (module)

 _static/file.png

_static/minus.png

_static/up-pressed.png

_static/comment-bright.png

_static/comment-close.png

_static/comment.png

_static/ajax-loader.gif

_static/down.png

_static/plus.png

nav.xhtml

 Table of Contents

 		Quantities

 		User's Guide

 		Installation

 		Prerequisites

 		Source Code Installation

 		Development

 		Quick-start tutorial

 		Known Issues

 		Temperature conversion

 		umath functions

 		Functions which ignore/drop units

 		License

 		License Agreement for Quantities

 		License Agreement for Scimath

 		Credits

 		Developer's Guide

 		Documenting Quantities

 		Getting started

 		Organization of Quantities' documentation

 		Formatting

 		Figures

 		Referring to quantities documents

 		Internal section references

 		Section names, etc

 		Emacs helpers

 		Development

 		Releases

 		Creating Source Releases

 		Creating Windows Installers

 		Building Quantities documentation

_static/up.png

_static/down-pressed.png

_images/math/b3ad52ad3049a5ed7753b8861aeee3b639ff0582.png
sin(z?)

_images/math/fd385d7022382a19ec2be94ea1ef9515935abfd9.png
2 o0

