
quantities Documentation
Release 0.14.0

Darren Dale

Feb 06, 2023

CONTENTS

1 User’s Guide 3
1.1 Installation . 3
1.2 Quick-start tutorial . 3
1.3 Known Issues . 8
1.4 License . 9
1.5 Credits . 10

2 Developer’s Guide 11
2.1 Documenting Quantities . 11
2.2 Development . 16
2.3 Releases . 16

Python Module Index 19

Index 21

i

ii

quantities Documentation, Release 0.14.0

Quantities is designed to handle arithmetic and conversions of physical quantities, which have a magnitude, dimen-
sionality specified by various units, and possibly an uncertainty. Quantities builds on the popular numpy library and is
designed to work with numpy’s standard ufuncs, many of which are already supported.

Quantities is actively developed, and while the current features and API are stable, test coverage is incomplete and the
package is not ready for production use. Python-2.6.0 or later is required.

CONTENTS 1

quantities Documentation, Release 0.14.0

2 CONTENTS

CHAPTER

ONE

USER’S GUIDE

1.1 Installation

1.1.1 Prerequisites

Quantities has a few dependencies:

• Python (>=3.8)

• NumPy (>=1.19)

(bearing in mind that not all combinations of Python and NumPy versions necessarily work).

1.1.2 Source Code Installation

To install Quantities, run “pip install quantities”.

1.1.3 Development

You can follow and contribute to Quantities’ development using git:

git clone git@github.com:python-quantities/python-quantities.git

Bugs, feature requests, and questions can be directed to the GitHub website.

1.2 Quick-start tutorial

Quantities is designed to handle arithmetic and conversions of physical quantities, which have a magnitude, dimen-
sionality specified by various units, and possibly an uncertainty. Quantities is designed to work with numpy’s standard
ufuncs, many of which are already supported. The package is actively developed, and while the current features and
API are stable, test coverage is incomplete and so the package is not suggested for production use.

It is strongly suggested to import quantities to its own namespace, so units and constants variables are not accidentally
overwritten:

>>> import quantities as pq

Here pq stands for “physical quantities” or “python quantities”. There are a number of ways to create a quantity. In
practice, it is convenient to think of quantities as a combination of a magnitude and units. These two quantities are
equivalent:

3

http://www.python.org/
http://www.scipy.org
http://github.com/python-quantities/python-quantities

quantities Documentation, Release 0.14.0

>>> import numpy as np
>>> q = np.array([1,2,3]) * pq.J
>>> q = [1,2,3] * pq.J
>>> print q
[1. 2. 3.] J

The Quantity constructor can also be used to create quantities, similar to numpy.array. Units can be designated using
a string containing standard unit abbreviations or unit names. For example:

>>> q = pq.Quantity([1,2,3], 'J')
>>> q = pq.Quantity([1,2,3], 'joules')

Units are also available as variables, and can be passed to Quantity:

>>> q = pq.Quantity([1,2,3], pq.J)

You can modify a quantity’s units in place:

>>> q = 1 * pq.m
>>> q.units = pq.ft
>>> print q
3.280839895013123 ft

or equivalently:

>>> q = 1 * pq.meter
>>> q.units = 'ft' # or 'foot' or 'feet'
>>> print q
3.280839895013123 ft

Note that, with strings, units can be designated using plural variants. Plural variants of the module variables are not
available at this time, in the interest of keeping the units namespace somewhat manageable. q.units = ‘feet’ will work,
q.units = pq.feet will not.

The units themselves are special objects that can not be modified in place:

>>> pq.meter.units = 'feet'
AttributeError: can not modify protected units

Instead of modifying a quantity in place, you can create a new quantity, rescaled to the new units:

>>> q = 300 * pq.ft * 600 * pq.ft
>>> q2 = q.rescale('US_survey_acre')
>>> print q2
4.13221487605 US_survey_acre

but rescaling will fail if the requested units fails a dimensional analysis:

>>> q = 10 * pq.joule
>>> q2 = q.rescale(pq.watt)
ValueError: Unable to convert between units of "J" and "W"

Quantities can not be rescaled in place if the unit conversion fails a dimensional analysis:

4 Chapter 1. User’s Guide

quantities Documentation, Release 0.14.0

>>> q = 10 * pq.joule
>>> q.units = pq.watts
ValueError: Unable to convert between units of "J" and "W"
>>> print q
10.0 J

Quantities will attempt to simplify units when the users intent is unambiguous:

>>> q = (10 * pq.meter)**3
>>> q2 = q/(5*pq.meter)**2
>>> print q2
40 m

Quantities will not try to guess in an ambiguous situation:

>>> q = (10 * pq.meter)**3
>>> q2 = q/(5*pq.ft)**2
>>> print q2
40 m**3/ft**2

In that case, it is not clear whether the user wanted ft converted to meters, or meters to feet, or neither. Instead, you can
obtain a new copy of the quantity in its irreducible units, which by default are SI units:

>>> q = (10 * pq.meter)**3
>>> q2 = q/(5*pq.ft)**2
>>> print q2
40 m**3/ft**2
>>> qs = q2.simplified
>>> print qs
430.556416668 m

It is also possible to customize the units in which simplified quantities are expressed:

>>> pq.set_default_units('cgs')
>>> print pq.J.simplified
10000000.0 g*cm**2/s**2
>>> pq.set_default_units(length='m', mass='kg')

There are times when you may want to treat a group of units as a single compound unit. For example, surface area
per unit volume is a fairly common quantity in materials science. If expressed in the usual way, the quantity will be
expressed in units that you may not recognize:

>>> q = 1 * pq.m**2 / pq.m**3
>>> print q
1.0 1/m

Here are some tricks for working with these compound units, which can be preserved:

>>> q = 1 * pq.CompoundUnit("m**2/m**3")
>>> print q
1.0 (m**2/m**3)

and can be simplified:

1.2. Quick-start tutorial 5

quantities Documentation, Release 0.14.0

>>> qs = q.simplified
>>> qs
1.0 1/m

and then rescaled back into compound units:

>>> q2 = qs.rescale(CompoundUnit("m**2/m**3"))
>>> print q2
1.0 (m**2/m**3)

Compound units can be combined with regular units as well:

>>> q = 1 * pq.CompoundUnit('parsec/cm**3') * pq.cm**2
>>> print q
1.0 cm**2*(parsec/cm**3)

It is easy to define a unit that is not already provided by quantities. For example:

>>> uK = pq.UnitQuantity('microkelvin', pq.degK/1e6, symbol='uK')
>>> print uK
1 uK (microkelvin)
>>> q = 1000*uK
>>> print q.simplified
0.001 K

There is also support for quantities with uncertainty:

>>> q = UncertainQuantity(4,J,.2)
>>> q
4.0*J
+/-0.2*J (1 sigma)

By assuming that the uncertainties are uncorrelated, the uncertainty can be propagated during arithmetic operations:

>>> length = UncertainQuantity(2.0, m, .001)
>>> width = UncertainQuantity(3.0, m, .001)
>>> area = length*width
>>> area
6.0*m**2
+/-0.00360555127546*m**2 (1 sigma)

In that case, the measurements of the length and width were independent, and the two uncertainties presumed to be
uncorrelated. Here is a warning though:

>>> q*q
16.0*J**2
+/-1.1313708499*J**2 (1 sigma)

This result is probably incorrect, since it assumes the uncertainties of the two multiplicands are uncorrelated. It would
be more accurate in this case to use:

>>> q**2
16.0*J**2
+/-1.6*J**2 (1 sigma)

6 Chapter 1. User’s Guide

quantities Documentation, Release 0.14.0

There is an entire subpackage dedicated to physical constants. The values of all the constants are taken from values
published by the National Institute of Standards and Technology at http://physics.nist.gov/constants . Most physical
constants have some form of uncertainty, which has also been published by NIST. All uncertainties are one standard
deviation. There are lots of constants and quantities includes them all (with one exception: F*, the Faraday constant for
conventional electrical current, which is defined in units of C_90, for which I have not found a hard reference value).
Physical constants are sort of similar to compound units, for example:

>>> print pq.constants.proton_mass
1 m_p (proton_mass)
>>> print pq.constants.proton_mass.simplified
1.672621637e-27 kg
+/-8.3e-35 kg (1 sigma)

A Latex representation of the dimensionality may be obtained in the following fashion:

>>> g = pq.Quantity(9.80665,'m/s**2')
>>> mass = 50 * pq.kg
>>> weight = mass*g
>>> print weight.dimensionality.latex
$\mathrm{\frac{kg{\cdot}m}{s^{2}}}$
>>> weight.units = pq.N
>>> print weight.dimensionality.latex
N

The Latex output is compliant with the MathText subset used by Matplotlib. To add formatted units to the axis label of
a Matplotlib figure, one could use:

>>> ax.set_ylabel('Weight ' + weight.dimensionality.latex)

Greater customization is available via the markup.format_units_latex function. It allows the user to modify the font,
the multiplication symbol, or to encapsulate the latex string in parentheses. Due to the complexity of CompoundUnits,
the latex rendering of CompoundUnits will utilize the latex frac{num}{den} construct.

Although it is not illustrated in this guide, unicode symbols can be used to provide a more compact representation of
the units. This feature is disabled by default. It can be enabled by setting the following in your ~/.pythonrc.py:

quantities_unicode = True

or you can change this setting on the fly by doing:

from quantities import markup
markup.config.use_unicode = True # or False

Even when unicode is enabled, when you pass strings to designate units, they should still conform to valid python
expressions.

Attention: Quantities is not a package for describing coordinate systems that require a point of reference, like
positions on a map. In particular, Quantities does not support absolute temperature scales. Instead, temperatures
are assumed to be temperature differences. For example:

>>> T = 20 * pq.degC
>>> print T.rescale('K')
20.0 K

Proper support of coordinate systems would be a fairly large undertaking and is outside the scope of this project.

1.2. Quick-start tutorial 7

http://physics.nist.gov/constants

quantities Documentation, Release 0.14.0

1.3 Known Issues

Quantities arrays are designed to work like normal numpy arrays. However, a few operations are not yet fully function-
ing.

Note: In the following code examples, it’s assumed that you’ve initiated the following imports:

>>> import numpy as np
>>> import quantities as pq

1.3.1 Temperature conversion

Quantities is not designed to handle coordinate systems that require a point of reference, like positions on a map or
absolute temperature scales. Proper support of coordinate systems would be a fairly large undertaking and is outside
the scope of this project. Furthermore, consider the following:

>>> T_0 = 100 * pq.K
>>> T_1 = 200 * pq.K
>>> dT = T_1-T_0
>>> dT.units = pq.degF

To properly support the above example, quantities would have to distinguish absolute temperatures with temperature
differences. It would have to know how to combine these two different animals, etc. The quantities project has therefore
elected to limit the scope to relative quantities.

As a consequence, quantities treats temperatures as a temperature difference. This is a distinction without a difference
when considering Kelvin and Rankine, or transformations between the two scales, since both scales have zero offset.
Temperature scales in Celsius and Fahrenheit are different and would require a non-zero offset, which is not supported
in Quantities unit transformation framework.

1.3.2 umath functions

Many common math functions ignore the dimensions of quantities. For example, trigonometric functions (e.g. np.sin)
suffer this fate. For these functions, quantities arrays are treated like normal arrays and the calculations proceed as
normal (except that a “not implemented” warning is raised). Note, however, this behavior is not ideal since some
functions should behave differently for different units. For example, you would expect np.sin to give different results
for an angle of 1° versus an angle of 1 radian; instead, np.sin extracts the magnitude of the input and assumes that it is
already in radians.

To properly handle quantities, use the corresponding quantities functions whenever possible. For example, pq.sin will
properly handle the angle inputs described above. For an exhaustive list, see the functions defined in pq.umath.

8 Chapter 1. User’s Guide

quantities Documentation, Release 0.14.0

1.3.3 Functions which ignore/drop units

There are additional numpy functions not in pq.umath that ignore and drop units. Below is a list known functions in
this category

• vstack

• interp

1.4 License

Quantities only uses BSD compatible code. See the Open Source Initiative licenses page for details on individual
licenses.

1.4.1 License Agreement for Quantities

Copyright (c) 2012, Darren Dale <dsdale24@gmail.com> All rights reserved.

Redistribution and use in source and binary forms, with or without modification, are permitted provided that the fol-
lowing conditions are met: 1. Redistributions of source code must retain the above copyright

notice, this list of conditions and the following disclaimer.

2. Redistributions in binary form must reproduce the above copyright notice, this list of conditions and the following
disclaimer in the documentation and/or other materials provided with the distribution.

3. Neither the name of the University nor the names of its contributors may be used to endorse or promote products
derived from this software without specific prior written permission.

THIS SOFTWARE IS PROVIDED BY THE REGENTS AND CONTRIBUTORS ``AS IS” AND ANY EXPRESS
OR IMPLIED WARRANTIES, INCLUDING, BUT NOT LIMITED TO, THE IMPLIED WARRANTIES OF MER-
CHANTABILITY AND FITNESS FOR A PARTICULAR PURPOSE ARE DISCLAIMED. IN NO EVENT SHALL
THE REGENTS OR CONTRIBUTORS BE LIABLE FOR ANY DIRECT, INDIRECT, INCIDENTAL, SPECIAL,
EXEMPLARY, OR CONSEQUENTIAL DAMAGES (INCLUDING, BUT NOT LIMITED TO, PROCUREMENT OF
SUBSTITUTE GOODS OR SERVICES; LOSS OF USE, DATA, OR PROFITS; OR BUSINESS INTERRUPTION)
HOWEVER CAUSED AND ON ANY THEORY OF LIABILITY, WHETHER IN CONTRACT, STRICT LIABIL-
ITY, OR TORT (INCLUDING NEGLIGENCE OR OTHERWISE) ARISING IN ANY WAY OUT OF THE USE OF
THIS SOFTWARE, EVEN IF ADVISED OF THE POSSIBILITY OF SUCH DAMAGE.

1.4.2 License Agreement for Scimath

This software is OSI Certified Open Source Software. OSI Certified is a certification mark of the Open Source Initiative.

Copyright (c) 2006, Enthought, Inc. All rights reserved.

Redistribution and use in source and binary forms, with or without modification, are permitted provided that the fol-
lowing conditions are met:

• Redistributions of source code must retain the above copyright notice, this list of conditions and the following
disclaimer.

• Redistributions in binary form must reproduce the above copyright notice, this list of conditions and the following
disclaimer in the documentation and/or other materials provided with the distribution.

• Neither the name of Enthought, Inc. nor the names of its contributors may be used to endorse or promote products
derived from this software without specific prior written permission.

1.4. License 9

http://www.opensource.org/licenses
mailto:dsdale24@gmail.com

quantities Documentation, Release 0.14.0

THIS SOFTWARE IS PROVIDED BY THE COPYRIGHT HOLDERS AND CONTRIBUTORS “AS IS” AND ANY
EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT LIMITED TO, THE IMPLIED WARRANTIES
OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR PURPOSE ARE DISCLAIMED. IN NO EVENT
SHALL THE COPYRIGHT OWNER OR CONTRIBUTORS BE LIABLE FOR ANY DIRECT, INDIRECT, INCI-
DENTAL, SPECIAL, EXEMPLARY, OR CONSEQUENTIAL DAMAGES (INCLUDING, BUT NOT LIMITED TO,
PROCUREMENT OF SUBSTITUTE GOODS OR SERVICES; LOSS OF USE, DATA, OR PROFITS; OR BUSI-
NESS INTERRUPTION) HOWEVER CAUSED AND ON ANY THEORY OF LIABILITY, WHETHER IN CON-
TRACT, STRICT LIABILITY, OR TORT (INCLUDING NEGLIGENCE OR OTHERWISE) ARISING IN ANY WAY
OUT OF THE USE OF THIS SOFTWARE, EVEN IF ADVISED OF THE POSSIBILITY OF SUCH DAMAGE.

1.5 Credits

Quantities was written by Darren Dale, with the hope that additional developers will contribute to — and take credit
for — its development.

Special thanks to those who have made valuable contributions (roughly in order of first contribution by date)

Charles Doutriaux
wrote the python wrapper for unit conversions with the UDUnits library (no longer used)

Enthought Inc.
the original units registry was developed at Enthought for the Enthought Tool Suite.

John Salvatier
added support for the Quantity iterator, contributed to support for simplified representations of units, comparison
operators, and contributed unit tests.

Tony Yu
contributed several bug fixes and contributed to the documentation.

10 Chapter 1. User’s Guide

CHAPTER

TWO

DEVELOPER’S GUIDE

2.1 Documenting Quantities

2.1.1 Getting started

The documentation for Quantities is generated from ReStructured Text using the Sphinx documentation generation tool
and the numpydoc Sphinx extension. Sphinx-0.6.3 or later is required. You can obtain Sphinx and numpydoc from the
Python Package Index or by doing:

pip install sphinx

The documentation sources are found in the doc/ directory in the trunk. The output produced by Sphinx can be
configured by editing the conf.py file located in the doc/ directory. To build the users guide in html format, run from
the main quantities directory:

python setup.py build_sphinx

and the html will be produced in build/sphinx/html. To build the pdf file:

python setup.py build_sphinx -b latex
cd build/sphinx/latex
make all-pdf

2.1.2 Organization of Quantities’ documentation

The actual ReStructured Text files are kept in doc. The main entry point is doc/index.rst, which pulls in the index.
rst file for the user guide and the developers guide. The documentation suite is built as a single document in order to
make the most effective use of cross referencing, we want to make navigating the Quantities documentation as easy as
possible.

Additional files can be added to the various guides by including their base file name (the .rst extension is not necessary)
in the table of contents. It is also possible to include other documents through the use of an include statement, such as:

.. include:: ../TODO

11

http://sphinx.pocoo.org/
http://pypi.python.org/pypi/numpydoc
http://pypi.python.org/pypi

quantities Documentation, Release 0.14.0

2.1.3 Formatting

The Sphinx website contains plenty of documentation concerning ReST markup and working with Sphinx in general.
Since quantities is so closely coupled with the numpy package, quantities will conform to numpy’s documentation stan-
dards and use numpy’s documentation tools. Please familiarize yourself with the docstring standard and the examples
like these.

Here are a few additional things to keep in mind:

• Please familiarize yourself with the Sphinx directives for inline markup. Quantities’ documentation makes heavy
use of cross-referencing and other semantic markup. For example, when referring to external files, use the
:file: directive.

• Function arguments and keywords should be referred to using the emphasis role. This will keep Quantities’
documentation consistant with Python’s documentation:

Here is a description of *argument*

Please do not use the default role:

Please do not describe `argument` like this.

nor the literal role:

Please do not describe ``argument`` like this.

• Sphinx does not support tables with column- or row-spanning cells for latex output. Such tables can not be used
when documenting Quantities.

• Mathematical expressions can be rendered as png images in html, and in the usual way by latex. For example:

:math:`\sin(x_n^2)` yields: sin(𝑥2
𝑛), and:

.. math::

\int_{-\infty}^{\infty}\frac{e^{i\phi}}{1+x^2\frac{e^{i\phi}}{1+x^2}}

yields: ∫︁ ∞

−∞

𝑒𝑖𝜑

1 + 𝑥2 𝑒𝑖𝜑

1+𝑥2

• Footnotes1 can be added using [#]_, followed later by:

.. rubric:: Footnotes

.. [#]

• Use the note and warning directives, sparingly, to draw attention to important comments:

.. note::
Here is a note

yields:
1 For example.

12 Chapter 2. Developer’s Guide

http://sphinx.pocoo.org/contents.html
http://projects.scipy.org/scipy/numpy/wiki/CodingStyleGuidelines#docstring-standard
http://projects.scipy.org/scipy/numpy/browser/trunk/doc/example.py#L37
http://projects.scipy.org/scipy/numpy/browser/trunk/doc/EXAMPLE_DOCSTRING.txt
http://sphinx.pocoo.org/markup/inline.html

quantities Documentation, Release 0.14.0

Note: here is a note

also:

Warning: here is a warning

• Use the deprecated directive when appropriate:

.. deprecated:: 0.98
This feature is obsolete, use something else.

yields:

Deprecated since version 0.98: This feature is obsolete, use something else.

• Use the versionadded and versionchanged directives, which have similar syntax to the deprecated role:

.. versionadded:: 0.98
The transforms have been completely revamped.

New in version 0.98: The transforms have been completely revamped.

• Use the seealso directive, for example:

.. seealso::

Using ReST :ref:`emacs-helpers`:
One example

A bit about :ref:`referring-to-quantities-docs`:
One more

yields:

See also:
Using ResT Emacs helpers:

One example

A bit about Referring to quantities documents:
One more

• The autodoc extension will handle index entries for the API, but additional entries in the index need to be explicitly
added.

2.1. Documenting Quantities 13

http://sphinx.pocoo.org/markup/para.html#index-generating-markup

quantities Documentation, Release 0.14.0

Docstrings

In addition to the aforementioned formatting suggestions:

• Please limit the text width of docstrings to 70 characters.

• Keyword arguments should be described using a definition list.

2.1.4 Figures

Dynamically generated figures

The top level doc dir has a folder called pyplots in which you should include any pyplot plotting scripts that you want
to generate figures for the documentation. It is not necessary to explicitly save the figure in the script, this will be done
automatically at build time to insure that the code that is included runs and produces the advertised figure. Several
figures will be saved with the same basnename as the filename when the documentation is generated (low and high res
PNGs, a PDF). Quantities includes a Sphinx extension (sphinxext/plot_directive.py) for generating the images
from the python script and including either a png copy for html or a pdf for latex:

.. plot:: pyplot_simple.py
:include-source:

The :scale: directive rescales the image to some percentage of the original size, though we don’t recommend using
this in most cases since it is probably better to choose the correct figure size and dpi in mpl and let it handle the scaling.
:include-source: will present the contents of the file, marked up as source code.

Static figures

Any figures that rely on optional system configurations need to be handled a little differently. These figures are not
to be generated during the documentation build, in order to keep the prerequisites to the documentation effort as low
as possible. Please run the doc/pyplots/make.py script when adding such figures, and commit the script and the
images to svn. Please also add a line to the README in doc/pyplots for any additional requirements necessary to
generate a new figure. Once these steps have been taken, these figures can be included in the usual way:

.. plot:: tex_unicode_demo.py
:include-source

2.1.5 Referring to quantities documents

In the documentation, you may want to include to a document in the Quantities src, e.g. a license file or an example.
When you include these files, include them using the literalinclude directive:

.. literalinclude:: ../examples/some_example.py

14 Chapter 2. Developer’s Guide

quantities Documentation, Release 0.14.0

2.1.6 Internal section references

To maximize internal consistency in section labeling and references, use hypen separated, descriptive labels for section
references, eg:

.. _howto-webapp:

and refer to it using the standard reference syntax:

See :ref:`howto-webapp`

Keep in mind that we may want to reorganize the contents later, so let’s avoid top level names in references like user
or devel or faq unless necessary, because for example the FAQ “what is a backend?” could later become part of the
users guide, so the label:

.. _what-is-a-backend

is better than:

.. _faq-backend

In addition, since underscores are widely used by Sphinx itself, let’s prefer hyphens to separate words.

2.1.7 Section names, etc

For everything but top level chapters, please use Upper lower for section titles, eg Possible hangups rather than
Possible Hangups

2.1.8 Emacs helpers

There is an emacs mode rst.el which automates many important ReST tasks like building and updating table-of-contents,
and promoting or demoting section headings. Here is the basic .emacs configuration:

(require 'rst)
(setq auto-mode-alist

(append '(("\\.txt$" . rst-mode)
("\\.rst$" . rst-mode)
("\\.rest$" . rst-mode)) auto-mode-alist))

Some helpful functions:

C-c TAB - rst-toc-insert

Insert table of contents at point

C-c C-u - rst-toc-update

Update the table of contents at point

C-c C-l rst-shift-region-left

Shift region to the left
(continues on next page)

2.1. Documenting Quantities 15

http://docutils.sourceforge.net/tools/editors/emacs/rst.el

quantities Documentation, Release 0.14.0

(continued from previous page)

C-c C-r rst-shift-region-right

Shift region to the right

2.2 Development

Quantities development uses the principles of test-driven development. New features or bug fixes need to be accompa-
nied by unit tests based on Python’s unittest package. Unit tests can be run with the following:

pytest

2.3 Releases

2.3.1 Creating Source Releases

Quantities is distributed as a source release for Linux and Mac OS. To create a source release, just do:

pip install build
python -m build
twine upload dist/quantities-<x.y.z>.*

(replacing x, y and z appropriately). This will create the tgz source file and upload it to the Python Package Index.
Uploading to PyPi requires a .pypirc file in your home directory, something like:

[server-login]
username: <username>
password: <password>

You can create a source distribution without uploading by doing:

python -m build --sdist

This creates a source distribution in the dist/ directory.

2.3.2 Building Quantities documentation

The Quantities documentation is automatically built on readthedocs.io.

Should you need to build the documentation locally, Sphinx, LaTeX (preferably TeX-Live), and dvipng are required.
Once these are installed, do:

cd doc
make html

which will produce the html output and save it in build/sphinx/html. Then run:

16 Chapter 2. Developer’s Guide

http://sphinx.pocoo.org/
http://www.latex-project.org/
http://www.tug.org/texlive/
http://savannah.nongnu.org/projects/dvipng/

quantities Documentation, Release 0.14.0

make latex
cd build/latex
make all-pdf
cp Quantities.pdf ../html

which will generate a pdf file in the latex directory.

2.3. Releases 17

quantities Documentation, Release 0.14.0

18 Chapter 2. Developer’s Guide

PYTHON MODULE INDEX

q
quantities, 3

19

quantities Documentation, Release 0.14.0

20 Python Module Index

INDEX

M
module

quantities, 3

Q
quantities
module, 3

21

	User’s Guide
	Installation
	Prerequisites
	Source Code Installation
	Development

	Quick-start tutorial
	Known Issues
	Temperature conversion
	umath functions
	Functions which ignore/drop units

	License
	License Agreement for Quantities
	License Agreement for Scimath

	Credits

	Developer’s Guide
	Documenting Quantities
	Getting started
	Organization of Quantities’ documentation
	Formatting
	Docstrings

	Figures
	Dynamically generated figures
	Static figures

	Referring to quantities documents
	Internal section references
	Section names, etc
	Emacs helpers

	Development
	Releases
	Creating Source Releases
	Building Quantities documentation

	Python Module Index
	Index

